13 Février 2018
|(Okayama, 13 February 2018) The burst of cells forming cartilage is associated with mineralization during the early stages of bone formation, and nanofragments of the cell membranes can act as nucleation sites for amorphous calcium phosphate, as reported in two studies just published in Integrative Biology and ASC Biomaterials Science and Engineering.
Cartilage has a very important scaffold-like function for the development of bones; during endochondral ossification, the chondrocytes, the cells forming cartilage, secrete matrix proteins and mineralization factors that optimize the environment for mineralization. The mechanisms of bone formation are not completely elucidated, and manipulating mineralization is challenging yet. Gaining control on this process is relevant as it would result in improved bioengineering techniques for cartilage tissue synthesis and reconstruction, and for the control of bone formation.
To gain further understanding in the initial steps of mineral formation, Professor Takuya Matsumoto and Assistant Professor Emilio Satoshi Hara from the Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences studied bone formation in the femur epiphysis (that is, the rounded end of the bone) in mice during secondary ossification in the first post-natal days.
In a first study, the researchers observed that chondrocytes burst near the mineralized area, which they suggest might be a space-making mechanism for mineral expansion. The space created after the cell burst indeed matches well that later occupied by the minerals at the end of the process, as demonstrated by time-lapse images of the initial bone formation process. To demonstrate the link between the burst and mineral formation and expansion, Professor Matsumoto and colleagues used external stimuli to induce the burst and manipulate bone tissue formation. In particular, two external factors were linked with triggering the burst: mechanical and osmotic pressure. Indeed, ex-vivo culture of the femur epiphysis in hypotonic condition or under mechanical pressure enhanced mineral formation, and in-vivo investigations of the role of mechanical pressure showed that reduced pressure onto the joints results in suppressed bone formation in the femur epiphysis.
In the research presented in the second paper, the scientists used a variety of techniques to observe the dynamic changes in organic and inorganic material in the cartilage in a time- and stage-specific way, confirming that the early steps of mineralization are based on the activity of chondrocytes. A careful analysis of nanofragments observed near the mineralized area revealed that they were nanofragments of chondrocyte membrane, and could be the nucleation sites for amorphous calcium phosphate, which then transformed into apatite crystals. The phospholipids in the fragments could provide the phosphate needed for this process. The researchers also synthesized artificial cell nanofragments, and showed that they promote mineral formation in vitro.
Controlling chondrocyte burst by means of external stimuli could result in new approaches to cartilage and bone tissue engineering. Moreover, because cell membrane nanofragments provide nucleation sites for mineral formation, these could be used to manipulate biomineralization, as the authors comment: “manipulation of chondrocyte burst with external mechano-chemical stimuli could be an additional approach for cartilage and bone tissue engineering,” and “in the future, cell membrane fragment-based materials can also be developed and applied in bone tissue engineering and regeneration”.
Background
There are two types of ossification centers, primary and secondary. Primary ossification center appears during prenatal development, whereas secondary ossification center appears during the post-natal and adolescent years. In long bones, the primary ossification center occurs in the central part of the bone, the secondary ossification center in the ends.
Two processes result in the formation of bone tissue: in intramembranous ossification, bone is laid down directly into the primitive connective tissue. In endochondral ossification, the one studied in the research discussed here, cartilage acts as a precursor, and is progressively degraded and replaced by bone.
Implications of the current studies
Because this research reveals two ways to induce the burst of chondrocytes (which in turns control bone formation by making space for mineralized tissue), by using mechanical and osmotic pressure, it opens the way to new methods to engineer bone tissue. The unveiling of the role of membrane fragments as nucleation centers for bone formation provides a new avenue for the development of biomaterials for bone tissue engineering and regeneration. Both results open new opportunities for bioengineering of bone tissue.
Caption
Understanding of biological phenomena (Life Science) from a multidisciplinary approach enables the development and optimization of bioinspired materials (Bioinspired Engineering).
Reference-1
Emilio Satoshi Hara, Masahiro Okada, Noriyuki Nagaoka, Takako Hattori, Takuo Kuboki, Takayoshi Nakano, Takuya Matsumoto. Bioinspired mineralization using chondrocyte membrane nanofragments. ACS Biomaterials Science & Engineering, January 16, 2018.
DOI: 10.1021/acsbiomaterials.7b00962
https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.7b00962?src=recsys
Reference-2
Emilio Satoshi Hara, Masahiro Okada, Noriyuki Nagaoka, Takako Hattori, Takuo Kuboki, Takayoshi Nakano, Takuya Matsumoto. Chondrocyte burst promotes space for mineral expansion. Integrative Biology, 2018,10, 57-66.
DOI: 10.1039/c7ib00130d
http://pubs.rsc.org/en/Content/ArticleLanding/2018/IB/C7IB00130D#!divAbstract
Reference (Okayama University e-Bulletin & OU-MRU) : Professor Matsumoto’s team
OU-MRU Vol.13:Peptide directs artificial tissue growth
OU-MRU Vol.41:Inorganic biomaterials for soft-tissue adhesion
Correspondence to
Professor Takuya Matsumoto, D.D.S., Ph.D.
Department of Biomaterials, Graduate School of
Medicine, Dentistry and Pharmaceutical Sciences,
Okayama University, Shikata-cho 2-5-1,
Okayama city, Okayama 700-8558, Japan
E-mail:
Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir.
Further information
Okayama University
1-1-1 Tsushima-naka , Kita-ku , Okayama 700-8530, Japan
Public Relations and Information Strategy
E-mail:
Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir.
Website: http://www.okayama-u.ac.jp/index_e.html
Okayama Univ. e-Bulletin: http://www.okayama-u.ac.jp/user/kouhou/ebulletin/
About Okayama University (YouTube):
https://www.youtube.com/watch?v=iDL1coqPRYI
Okayama University Image Movie (YouTube):
https://www.youtube.com/watch?v=KU3hOIXS5kk
Okayama University Medical Research Updates (OU-MRU)
Vol.1:Innovative non-invasive ‘liquid biopsy’ method to capture circulating tumor cells from blood samples for genetic testing
http://www.okayama-u.ac.jp/eng/release/index_id210.html
Vol.2:Ensuring a cool recovery from cardiac arrest
Vol.3:Organ regeneration research leaps forward
Vol.4:Cardiac mechanosensitive integrator
Vol.5:Cell injections get to the heart of congenital defects
Vol.6:Fourth key molecule identified in bone development
Vol.7:Anticancer virus solution provides an alternative to surgery
Vol.8:Light-responsive dye stimulates sight in genetically blind patients
Vol.9:Diabetes drug helps towards immunity against cancer
Vol.10:Enzyme-inhibitors treat drug-resistant epilepsy
Vol.11:Compound-protein combination shows promise for arthritis treatment
Vol.12:Molecular features of the circadian clock system in fruit flies
Vol.13:Peptide directs artificial tissue growth
Vol.14:Simplified boron compound may treat brain tumours
Vol.15:Metamaterial absorbers for infrared inspection technologies
Vol.16:Epigenetics research traces how crickets restore lost limbs
Vol.17:Cell research shows pathway for suppressing hepatitis B virus
Vol.18:Therapeutic protein targets liver disease
Vol.19:Study links signalling protein to osteoarthritis
Vol.20:Lack of enzyme promotes fatty liver disease in thin patients
Vol.21:Combined gene transduction and light therapy targets gastric cancer
Vol.22:Medical supportive device for hemodialysis catheter puncture
Vol.23:Development of low cost oral inactivated vaccines for dysentery
Vol.24:Sticky molecules to tackle obesity and diabetes
Vol.25:Self-administered aroma foot massage may reduce symptoms of anxiety
Vol.26:Protein for preventing heart failure
Vol.27:Keeping cells in shape to fight sepsis
Vol.28:Viral-based therapy for bone cancer
Vol.29:Photoreactive compound allows protein synthesis control with light
Vol.30:Cancer stem cells’ role in tumor growth revealed
Vol.31:Prevention of RNA virus replication
Vol.32:Enzyme target for slowing bladder cancer invasion
Vol.33:Attacking tumors from the inside
Vol.34:Novel mouse model for studying pancreatic cancer
Vol.35:Potential cause of Lafora disease revealed
Vol.36:Overloading of protein localization triggers cellular defects
Vol.37:Protein dosage compensation mechanism unravelled
Vol.38:Bioengineered tooth restoration in a large mammal
Vol.39:Successful test of retinal prosthesis implanted in rats
Vol.40:Antibodies prolong seizure latency in epileptic mice
Vol.41:Inorganic biomaterials for soft-tissue adhesion
Vol.42:Potential drug for treating chronic pain with few side effects
Vol.43:Potential origin of cancer-associated cells revealed
Vol.44:Protection from plant extracts
Vol.45:Link between biological-clock disturbance and brain dysfunction uncovered
Vol.46:New method for suppressing lung cancer oncogene
Vol.47:Candidate genes for eye misalignment identified
Vol.48:Nanotechnology-based approach to cancer virotherapy
http://www.okayama-u.ac.jp/eng/research_highlights/index_id65.html
Okayama University (Tsushima Campus, Okayama City)
http://www.okayama-u.ac.jp/eng/access_maps/Tsushima_Campus.html
◆About Okayama University
Okayama University is one of the largest comprehensive universities in Japan with roots going back to the Medical Training Place sponsored by the Lord of Okayama and established in 1870. Now with 1,300 faculty and 13,000 students, the University offers courses in specialties ranging from medicine and pharmacy to humanities and physical sciences.
Okayama University is located in the heart of Japan approximately 3 hours west of Tokyo by Shinkansen.
Website: http://www.okayama-u.ac.jp/index_e.html