alt(Okayama, 3 March) Researchers at Okayama University report in Scientific Reports how the overloading of protein transport mechanisms affects cell functioning. Over-expression of different types of target proteins leads to cellular growth defects, and the mechanism for transporting proteins out of a cell nucleus has the lowest over-expression tolerance.

Transporting proteins to where they need to be within an organism’s cell — protein targeting — costs resources. Too much expression (the synthesis and subsequent handling by the cell) of proteins that require transportation may limit the cell’s resources for moving other proteins around, potentially hampering proper cell functioning. A team of researchers from Okayama University led by Hisao Moriya has now investigated in detail what actually happens when protein-targeting resources become overloaded, and concluded that overloading situations lead to cellular growth defects.

For protein targeting, organisms rely on so-called signals: particular amino acid sequences within proteins that act as labels. Mitochondrial targeting signals (MTSs), signal sequences (SSs), nuclear localization signals (NLSs) and nuclear export signals (NESs) are important labels that drive proteins to mitochondria, to the endoplasmic reticulum, into the cell nucleus, and out of it, respectively. Moriya and colleagues attached signals of these types to green fluorescent proteins (GFPs) and, using a method they had developed before (‘genetic tug of war’), measured the expression limits of the modified GFPs.

By comparing results for signal-modified and unmodified GFPs, the researchers first observed that the added signals reduce expression limits of the modified GFPs — except for the NLS modification. NESs had the lowest limit; this is due to the exhaustion of a protein known as chromosomal maintenance 1 (Crm1) when overloading nuclear export processes mediated by Crm1. For MTS- and SS-modified GFPs, specific limiting factors could not be identified yet.

Moriya and colleagues assessed the physiological consequences of the reduced protein expression capabilities by gene analysis of the sets of messenger-RNA molecules (the transcriptomes) in the cells expressing modified GFP; they found that the artificially applied signals trigger various defects in cellular processes, similar to what happens with GFPs modified with a misfolding mutant.

The scientists also managed to obtain estimates for the critical amount of protein causing growth defects, via measurements of the number of modified GFPs produced. For MTS-, NES- and SS-modified GFPs the limits were 4%, 1% and 0.7%, respectively (the percentages are relative to the amount of unmodified GFP produced).

The findings of Moriya and colleagues show that the overloading of transport machineries in cells has various knock-on effects on cellular functioning. As the researchers point out: “understanding and controlling process overloads is beneficial for disease treatment and cellular engineering.”

Background

Genetic tug of war

Developed in the group of Hisao Moriya at Okayama University, the ‘genetic tug of war (gTOW)’ screening method enables estimating the over-expression limit of a particular protein. The method consists of first implanting the gene encoding the protein in yeast (Saccharomyces cerevisiae) cells, then generating copies of the gene and, finally, determining the copy-number limit; the latter serves as a proxy for the protein’s expression limit. The researchers used the gTOW technique for investigating the expression limit of various signal-modified green fluorescent proteins (GFPs).

Green fluorescent protein

Green fluorescent protein (GFP) displays green fluorescence upon exposure to blue-to-ultraviolet light. The GFP gene is often used in biomedical protein expression experiments. For instance, it has been shown that the GFP gene can be expressed in specific cells, particular organs, or whole organisms. Moriya and colleagues expressed GFPs modified with localization signals in yeast cells; they exploited the fluorescence property of GFPs for investigating the effects of the modifications on cells, including growth defects.

alt

Caption

Representation of changes in gene expression levels (green: decreased, violet: increased) upon high-level expression of different types of modified green fluorescent proteins (GFPs). Clusters of genes with specific functional categories are marked by boxes; clearly, high-level expression of modified GFPs leads to defects in cellular functioning.

Reference

Reiko Kintaka, Koji Makanae, and Hisao Moriya. Cellular growth defects triggered by an overload of protein localization processes. Scientific Reports, 6, Article Number 31774, 2016.

DOI:10.1038/srep31774

http://www.nature.com/articles/srep31774


Reference (Okayama Univ. e-Bulletin): Associate Professor Moriya’s team

Measuring the copy number limits of all genes in budding yeast. – First time ever for any organisms –. (2013)

Correspondence to

Associate Professor Hisao Moriya, Ph.D.

Research Core for Interdisciplinary Sciences, Okayama University,

3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan

e-mail : Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir.

http://tenure5.vbl.okayama-u.ac.jp/~hisaom/HMwiki/index.php?TopEnglish

Further information

Okayama University

1-1-1 Tsushima-naka , Kita-ku , Okayama 700-8530, Japan

Public Relations and Information Strategy

E-mail: Cette adresse email est protégée contre les robots des spammeurs, vous devez activer Javascript pour la voir.

Website: http://www.okayama-u.ac.jp/index_e.html

Okayama Univ. e-Bulletin: http://www.okayama-u.ac.jp/user/kouhou/ebulletin/

Okayama Univ. e-Bulletin (PDF Issues): http://www.okayama-u.ac.jp/en/tp/cooperation/ebulletin.html

About Okayama University (You Tube):

https://www.youtube.com/watch?v=iDL1coqPRYI

Okayama University Image Movie (You Tube):

https://www.youtube.com/watch?v=_WnbJVk2elA

https://www.youtube.com/watch?v=KU3hOIXS5kk

Okayama University Medical Research Updates OU-MRU

Vol.1:Innovative non-invasive ‘liquid biopsy’ method to capture circulating tumor cells from blood samples for genetic testing

http://www.okayama-u.ac.jp/eng/release/index_id210.html


Vol.2:Ensuring a cool recovery from cardiac arrest

Vol.3:Organ regeneration research leaps forward

Vol.4:Cardiac mechanosensitive integrator

Vol.5:Cell injections get to the heart of congenital defects

Vol.6:Fourth key molecule identified in bone development

Vol.7:Anticancer virus solution provides an alternative to surgery

Vol.8:Light-responsive dye stimulates sight in genetically blind patients

Vol.9:Diabetes drug helps towards immunity against cancer

Vol.10:Enzyme-inhibitors treat drug-resistant epilepsy

Vol.11:Compound-protein combination shows promise for arthritis treatment

Vol.12:Molecular features of the circadian clock system in fruit flies

Vol.13:Peptide directs artificial tissue growth

Vol.14:Simplified boron compound may treat brain tumours

Vol.15:Metamaterial absorbers for infrared inspection technologies

Vol.16:Epigenetics research traces how crickets restore lost limbs

Vol.17:Cell research shows pathway for suppressing hepatitis B virus

Vol.18:Therapeutic protein targets liver disease

Vol.19:Study links signalling protein to osteoarthritis

Vol.20:Lack of enzyme promotes fatty liver disease in thin patients

Vol.21:Combined gene transduction and light therapy targets gastric cancer

Vol.22:Medical supportive device for hemodialysis catheter puncture

Vol.23:Development of low cost oral inactivated vaccines for dysentery

Vol.24:Sticky molecules to tackle obesity and diabetes

Vol.25:Self-administered aroma foot massage may reduce symptoms of anxiety

Vol.26:Protein for preventing heart failure

Vol.27:Keeping cells in shape to fight sepsis

Vol.28:Viral-based therapy for bone cancer

Vol.29:Photoreactive compound allows protein synthesis control with light

Vol.30:Cancer stem cells’ role in tumor growth revealed

Vol.31:Prevention of RNA virus replication

Vol.32:Enzyme target for slowing bladder cancer invasion

Vol.33:Attacking tumors from the inside

Vol.34:Novel mouse model for studying pancreatic cancer

Vol.35:Potential cause of Lafora disease revealed

http://www.okayama-u.ac.jp/eng/research_highlights/index_id46.html


About Okayama University

Okayama University is one of the largest comprehensive universities in Japan with roots going back to the Medical Training Place sponsored by the Lord of Okayama and established in 1870. Now with 1,300 faculty and 14,000 students, the University offers courses in specialties ranging from medicine and pharmacy to humanities and physical sciences.

Okayama University is located in the heart of Japan approximately 3 hours west of Tokyo by Shinkansen.